Beton mit Sprudelwasser als CO2-Senke
Dekarbonisierung am Bau 01. Jul 2024 Von Bettina Reckter Lesezeit: ca. 2 Minuten

Beton mit Sprudelwasser als CO2-Senke

US-Forschende rühren den Baustoff Beton mit Sprudelwasser an. Der wird dadurch genauso langlebig wie normaler Beton und bindet zudem das Klimagas CO2 dauerhaft.

PantherMedia B377069256
Beton ist einer der wichtigsten Grundstoffe in der Baubranche. Seine miserable CO2-Bilanz zu verbessern, ist ein wichtiges Anliegen von internationalen Forschungsteams.
Foto: PantherMedia / Len44ik

Beton ist ein vielseitiger Baustoff, doch leider ziemlich schädlich fürs Klima. Denn er besteht aus Wasser und Sand, aber eben auch aus Zement, der nur extrem energieaufwendig und damit unter erheblichem CO2-Ausstoß hergestellt wird. Nun aber hat ein Ingenieurteam der Northwestern University in Evanston (IL), ein Verfahren entwickelt, bei dem ein Teil des CO2 im Baustoff selbst gebunden wird. Wie das genau funktioniert, berichten die Forschenden im Nature-Fachblatt Communications Materials.

Der Trick der US-Wissenschaftler: Sie benutzen Sprudelwasser zum Anrühren des Betons, denn darin ist CO2 schon von Natur aus in Form von Kohlensäure enthalten. Und es lässt sich auch zusätzlich Kohlensäure ins Wasser einspritzen. Im Labor erreichte das Team um Alessandro Rotta Loria eine CO2-Sequestrierungseffizienz von bis zu 45 %, es konnte also knapp die Hälfte des bei der Betonherstellung injizierten Kohlendioxids gespeichert werden.

Die CO2-Sequestrierung beschreibt eigentlich die Deponierung von Kohlendioxid (CO2) im tieferen Untergrund. Sie ist laut Bundesverband für Geothermie Teil des CCS-Prozesses (Carbon Capture and Storage), bei dem das Klimagas der Atmosphäre entzogen und dann dauerhaft gespeichert wird.

Lesetipp: KIT-Pilotanlage für klimafreundlichen Zement

CO2 ins Wasser injiziert, bevor es mit dem Zement angerührt wird

„Die Zement- und Betonindustrie trägt erheblich zu den vom Menschen verursachten CO2-Emissionen bei“, sagt Rotta Loria von der McCormick School of Engineering an der Northwestern University. „Wir haben jetzt eine neue Methode, um einen Teil des CO2 wiederzuverwenden, das bei der Betonherstellung in eben diesem Material freigesetzt wird. Und unsere Lösung ist technologisch so einfach, dass sie für die Industrie relativ einfach zu implementieren sein sollte.“

Das Bild zeigt sowohl die Injektion von kohlensäurehaltigem Wasser als auch die Strukturen im Beton unter dem Rasterelektronenmikroskop. Foto: Alessandro Rotta Loria/Northwestern University

Wie funktioniert das? Zuerst injiziert man Kohlendioxid in das Wasser, in dem sich nur eine kleine Menge Zementpulver befindet. Wird diese Suspension dann mit dem Rest des Zements und der Zuschlagstoffe gemischt, entsteht ein Beton, der während seiner Herstellung CO2 absorbiert hat.

Karbonisierung von zementhaltigem Material für neue Produkte auf Klinkerbasis

Die kohlensäurehaltige Zementsuspension sei viel dünnflüssiger als die Mischung aus Wasser, Zement und Zuschlagstoffen, die üblicherweise für Karbonat-Frischbeton verwendet wird, sagt Rotta Loria. Aber er könne „eine sehr schnelle Kinetik der chemischen Reaktionen nutzen, die zu Kalziumkarbonatmineralien führen“.

Das Ergebnis ist ein Betonprodukt mit einer signifikant höheren Konzentration an Kalziumkarbonatmineralien im Vergleich etwa zu einer Injektion von CO2 in die Frischbetonmischung. Rottas Team fand heraus, dass die Festigkeit des neuen Baustoffs durchaus mit der Haltbarkeit von normalem Beton konkurrieren kann.

Lesenswert: Hochbau nach dem Lego-Prinzip mit Platten aus wiederverwendbarem Carbon-Beton

Die Zementindustrie hat diese Forschungsarbeiten unterstützt. „Interessanterweise bietet dieser Ansatz zur Beschleunigung und Akzentuierung der Karbonisierung von zementbasierten Materialien die Möglichkeit, neue Produkte auf Klinkerbasis zu entwickeln, bei denen CO2 zu einem Schlüsselbestandteil wird“, sagte Studienmitautor Davide Zampini, Vizepräsident für globale Forschung und Entwicklung beim mexikanischen Zementhersteller Cemex.

Ein Beitrag von:

Stellenangebote

Hochschule Esslingen - University of Applied Sciences

Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen

Göppingen
Hochschule Düsseldorf University of Applied Sciences

Professur "Energietechnik und Strömungssimulation"

Düsseldorf
IU Internationale Hochschule GmbH

Professur Bauingenieurwesen (w/m/d)

verschiedene Standorte
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Elektroingenieure*innen Forschungsbau und Infrastruktur

München
Max-Planck-Institut für Plasmaphysik

Ingenieur*in der Fachrichtung Elektrotechnik

Greifswald
Fachhochschule Münster

Professur für "Elektrische Netze"

Steinfurt
Bundesanstalt für Immobilienaufgaben

Baumanagerin / Baumanager (w/m/d)

Berlin
NORDEX GROUP

Engineer Blade Structures (m/f/d) - Methods & Tools

Hamburg, Sarriguren (Spanien)
MAX-DELBRÜCK-CENTRUM FÜR MOLEKULARE MEDIZIN

Instandhaltungsingenieur*in Technische Gebäudeausrüstung (m/w/d)

Berlin
Fachhochschule Kiel

W2-Professur für "Erneuerbare Offshore-Energien mit Schwerpunkt Windenergietechnik"

Kiel
Hochschule Esslingen - University of Applied Sciences

Professor:in für das Lehrgebiet Carl-Zeiss-Stiftungsprofessur für Produktions- und Herstellverfahren von Wasserstoffsystemen

Göppingen
Hochschule Düsseldorf University of Applied Sciences

Professur "Energietechnik und Strömungssimulation"

Düsseldorf
IU Internationale Hochschule GmbH

Professur Bauingenieurwesen (w/m/d)

verschiedene Standorte
Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Elektroingenieure*innen Forschungsbau und Infrastruktur

München
Max-Planck-Institut für Plasmaphysik

Ingenieur*in der Fachrichtung Elektrotechnik

Greifswald
Fachhochschule Münster

Professur für "Elektrische Netze"

Steinfurt
Zur Jobbörse

Das könnte Sie auch interessieren

Empfehlungen des Verlags

Meistgelesen