Energie: Kernfusion kann kompakter werden
Ein Max-Planck-Forschungsteam hat entdeckt, wie wir Fusionskraftwerke kleiner und damit auch kostengünstiger bauen können. Dabei können die Forscherinnen und Forscher einen Effekt gewinnbringend nutzen, den sie vor rund einem Jahrzehnt entdeckt haben.
In Kernfusionskraftwerken müssen mehr als 100 Mio. °C heiße Plasmen sicher eingeschlossen werden. Nur so lässt sich die Fusionsenergie nutzbar machen. Dafür hält bei Reaktoren vom Typ Tokamak ein magnetischer Käfig die Plasmen in den Anlagen auf Abstand zur Gefäßwand, damit diese nicht schmilzt. Ein enorm aufwendiges Verfahren, das auch Platz braucht – 25 cm Abstand muss das Plasma bisher am heikelsten Element solch eines Tokamak-Reaktors zur Gefäßwand haben, am sogenannten Divertor. Am Divertor soll im Betrieb das Fusionsprodukt Helium (He4) ausgeleitet werden, auch für die Wärmeableitung ist das Bauteil zentral. „In dieser Wandregion ist die Belastung besonders hoch“, weiß Ulrich Stroth, Leiter des Bereichs Plasmarand und Wand am Max-Planck-Institut für Plasmaphysik (IPP).
Kernfusion: Neue Möglichkeit durch hochfrequent gepulste, elektrische Felder
Jetzt haben Forscherinnen und Forscher des IPP in München-Garching, die den Forschungs-Tokamak-Reaktor Asdex betreiben, es geschafft, diese Distanz von 25 cm auf 5 cm zu verringern. Möglich machen das sogenannte X-Strahler. Im Prinzip sind es besonders starke Dreckansammlungen im Plasma, die aber in diesem Fall bewusst induziert werden. Dem Plasma werden heute schon gezielt Verunreinigungen (oft Stickstoff) zugesetzt, damit es nicht zu heiß wird. Die Kühlung kommt durch UV-Licht zustande, das die zugesetzten Atome erzeugen. In bestimmten Magnetfeldgeometrien können sich dann besonders viele dieser Verunreinigungen ansammeln und es entstehen so die X-Strahler.
Mit mehr Dreck zu besserer Kernfusion
„Die zugesetzte Verunreinigung bringt uns zwar etwas schlechtere Plasmaeigenschaften, aber wenn wir den X-Punkt-Strahler durch Variation des Stickstoffeintrags gezielt platzieren, können wir die Experimente bei höheren Leistungen betreiben, ohne die Anlage zu schädigen“, erklärt IPP-Forscher Matthias Bernert. X-Strahler strahlen also besonders intensiv und damit erhöht sich ihre Kühlwirkung auf das Plasma. Außerdem, so das IPP in einer Mitteilung, sei der Kühlungseffekt größer als ursprünglich angenommen.
Energie aus Kernfusion – Das ewige Versprechen
„Wir haben es mit einer bedeutenden Entdeckung in der Fusionsforschung zu tun“, urteilt Stroth. „Der X-Punkt-Strahler eröffnet uns völlig neue Möglichkeiten bei der Entwicklung eines Kraftwerks.“ Das aus zwei Gründen:
- Divertoren können kleiner und technologisch deutlich einfacher gebaut werden als bisher.
- Das Plasma kann das Vakuumgefäß besser ausnutzen. Erste Rechnungen des IPP zeigen, dass sich im besten Fall eine Verdopplung des Plasmavolumens im gleichen Gefäß erreichen ließe. Damit würde ein zukünftiger Reaktor kompakter, sprich bei gleichen Maßen leistungsfähiger.