Quantenmagnetometer erkennt auch kleinste Materialdefekte
Flugzeuge und Autos werden sicherer, wenn kleine Schäden früh erkannt werden. Dafür wurde nun ein Quantenmagnetometer entwickelt. Auch die Biomedizin soll davon profitieren können.
Weil Quantenmagnetometer deutlich empfindlicher reagieren als bisherige Magnetometer, lassen sich mit ihnen auch kleinste Strukturdefekte wie Risse, Ausscheidungen oder weitere Unregelmäßigkeiten in metallischen Materialien schnell erkennen. Schäden führen zu lokalen Veränderungen im Magnetfeld, welche sich damit zerstörungsfrei prüfen lassen. In der Luft- und Raumfahrttechnik und der Automobilindustrie können sie somit dazu beitragen, die Sicherheit von Systemen und Werkstoffen erheblich zu steigern.
Im Projekt Quantenmagnetometrie, kurz „QMag“, haben Fraunhofer-Forschende Quantensensoren für konkrete industrielle Anwendungen untersucht und weiterentwickelt. „Die bisherigen Technologien sind entweder zu groß oder stehen der Industrie nicht zur Verfügung“, sagt Projektleiter Rüdiger Quay, Leiter des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF.
Quantensensoren: Messung bei Raumtemperatur
Das Fraunhofer-Team arbeitete mit zwei komplementären Ansätzen: Zum einen nutzten sie optisch gepumpte Magnetometer (OPM), die sich durch ihre extrem hohe Magnetfeldempfindlichkeit auszeichnen. Zum anderen verwendeten sie bildgebende Quantenmagnetometer auf der Basis von Stickstoff-Fehlstellen-Zentren (NV-Zentren) in Diamant mit extrem hoher Ortsauflösung. Beide Technologien funktionieren bei Raumtemperatur und eignen sich laut Fraunhofer IAF für die industrielle Anwendung.
Lesetipp: Gemeinsame Standards für Quantentechnik – Normungsgremien veröffentlichen Roadmap
Die Forschungsergebnisse zeigten, dass die Quantenmagnetometer bereits Veränderungen im Magnetfeld der Proben detektieren, wenn die Materialermüdung noch nicht sichtbar ist – also viel früher als herkömmliche Technologien. Mittels OPMs hatten die Forschenden die Änderungen des Magnetfelds ferromagnetischer Materialproben gemessen, während diese zyklisch ermüdet wurden. Gleichzeitig konnte die Messdauer verkürzt werden, was für den Einsatz in industriellen Prozessen wie der Bauteilprüfung sehr wichtig ist.
Weitere Anwendungen in der Biomedizin, Durchflussmessung und Chipindustrie
Zudem ist es den Forschenden nach eigenen Angaben gelungen, den Einsatzbereich von NV-Magnetometern zu erweitern: Das Weitfeldmagnetometer misst dabei Magnetfelder über einen großen Probenbereich und eignet sich damit für schnelle Messungen im industriellen Einsatz. Niklas Mathes, Forscher am Fraunhofer IAF, sagt dazu: „Das Weitfeldmagnetometer kann für die Charakterisierung und Optimierung von ferromagnetischen Werkstoffen eingesetzt werden, aber es eignet sich auch sehr gut für Anwendungen in der Biomedizin und der Medizintechnik. Organische Proben können damit zerstörungsfrei und bildgebend untersucht werden.“
Darüber hinaus haben die Forschenden ein gänzlich neues Verfahren zur Messung der Fließgeschwindigkeiten von Flüssigkeiten in einem Rohr entwickelt, das auf OPMs basiert. Die magnetometrische Durchflussmessung sei kontaktlos auf eine Vielzahl von Medien anwendbar und eigne sich für den Einsatz in der Prozesskontrolle, heißt es dazu vom Fraunhofer IAF. Bisherige Methoden zur Durchflussmessung seien dagegen meistens invasiv.
Lesen Sie auch: Quantenphänomen macht Halbleiter-Bauelement störungsunanfällig
Außerdem hat das Projektteam den Einsatz von Quantenmagnetometern in der Mikro- und Nanoelektronik sowie der Chipherstellung untersucht und ein enormes Potenzial festgestellt: Bei der Qualitätskontrolle ließen sich mit Quantenmagnetometern beispielsweise elektrische Schaltkreise vermessen und fehlerhafte Transistoren sofort identifizieren.